Hierarchical factor models for large spatially misaligned data: a low-rank predictive process approach.
نویسندگان
چکیده
This article deals with jointly modeling a large number of geographically referenced outcomes observed over a very large number of locations. We seek to capture associations among the variables as well as the strength of spatial association for each variable. In addition, we reckon with the common setting where not all the variables have been observed over all locations, which leads to spatial misalignment. Dimension reduction is needed in two aspects: (i) the length of the vector of outcomes, and (ii) the very large number of spatial locations. Latent variable (factor) models are usually used to address the former, although low-rank spatial processes offer a rich and flexible modeling option for dealing with a large number of locations. We merge these two ideas to propose a class of hierarchical low-rank spatial factor models. Our framework pursues stochastic selection of the latent factors without resorting to complex computational strategies (such as reversible jump algorithms) by utilizing certain identifiability characterizations for the spatial factor model. A Markov chain Monte Carlo algorithm is developed for estimation that also deals with the spatial misalignment problem. We recover the full posterior distribution of the missing values (along with model parameters) in a Bayesian predictive framework. Various additional modeling and implementation issues are discussed as well. We illustrate our methodology with simulation experiments and an environmental data set involving air pollutants in California.
منابع مشابه
Spatial Regression in the Presence of Misaligned data
In this paper, four approaches are presented to the problem of fitting a linear regression model in the presence of spatially misaligned data. These approaches are plug-in method, simulation, regression calibration and maximum likelihood. In the first two approaches, with modeling the correlation between the explanatory variable, prediction of explanatory variable is determined at sites...
متن کاملComparing Hierarchical Models for Spatio temporally Misaligned Data using the DIC Criterion
Bayes and empirical Bayes methods have proven eeective in smoothing crude maps of disease risk, eliminating the instability of estimates in low-population areas while maintaining overall geographic trends and patterns. Recent w ork extends these methods to the analysis of areal data which are spatially misaligned, i.e., involving variables (typically counts or rates) which are ag-gregated over ...
متن کاملAnalysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran
Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...
متن کاملComparing Hierarchical Models for Spatio - temporallyMisaligned Data using the DIC
Bayes and empirical Bayes methods have proven eeective in smoothing crude maps of disease risk, eliminating the instability of estimates in low-population areas while maintaining overall geographic trends and patterns. Recent work extends these methods to the analysis of areal data which are spatially misaligned, i.e., involving variables (typically counts or rates) which are ag-gregated over d...
متن کاملSpatial Design for Knot Selection in Knot-Based Low-Rank Models
Analysis of large geostatistical data sets, usually, entail the expensive matrix computations. This problem creates challenges in implementing statistical inferences of traditional Bayesian models. In addition,researchers often face with multiple spatial data sets with complex spatial dependence structures that their analysis is difficult. This is a problem for MCMC sampling algorith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 69 1 شماره
صفحات -
تاریخ انتشار 2013